Physics of the Heavy Flavor Tracker at STAR

Nu Xu

Nuclear Science Division
Lawrence Berkeley National Laboratory

Physics of the Heavy Flavor Tracker at STAR

1) Au+Au collisions

- measure heavy-quark hadron v₂, the heavy-quark collectivity to study light-quark thermalization
- measure di-leptions to study the direction radiation from the hot/dens medium
- measure heavy-quark energy loss to study pQCD in hot/dense medium

2) p+p collisions

- measure energy dependence of the heavy-quark production
- measure CP with W production at 500 GeV
- measure gluon structure with heavy quarks and direct photons

SERVICE LA LAG

Outline

- 1) Introduction
- 2) Recent results from RHIC
 - Jet quenching
 - Partonic collectivity
- 3) New frontier heavy quark production
 - HQ collectivity: test light quark thermalization
 - HQ energy loss: test pQCD in hot/dense medium
- 4) Proton helicity structure at RHIC

Quantum Chromodynamics

- Quantum Chromodynamics (QCD) is the established theory of strongly interacting matter.
- 2) Gluons hold quarks together to from hadrons:

meson

baryon

 Gluons and quarks, or partons, typically exist in a color singlet state: confinement.

The QCD Phase Diagram

QCD on Lattice

Lattice calculations predict

 $T_c \sim 160 \pm 20 \text{ MeV}$

- Large increase in ε,
 a fast cross cover!
- 2) Does not reach ideal, non-interaction S. Boltzmann limit!
- ⇒ many body interactions
- ⇒ Collective modes
- ⇒ Quasi-particles are necessary

- Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, PLB643 46(06); hep-lat/0609068
- Z. Fodor et al, **JHEP** 0203:014(02)
- Z. Fodor et al, hep-lat/0204029
- C.R. Allton et al, PRD66, 074507(02)
- F. Karsch, Nucl. Phys. A698, 199c(02).

High-energy Nuclear Collisions

Nu Xu

Energy Loss in A+A Collisions

Inclusive cross-section (jets, $\pi^{0,\pm}$, p[±])

Mid-y jets, $\pi^{0,\pm}$ and p[±] productions are well reproduced by NLO pQCD calculations over many orders of magnitude \Rightarrow

- 1) powerful tool for analyzing spin physics.
- 2) reliable reference for study high-energy nuclear collisions.

STAR: PRL <u>97</u>, 252001(06); PL <u>B637</u>, 161(06)

Suppression and Correlation

In central Au+Au collisions: hadrons are suppressed and back-to-back 'jets' are disappeared. Different from p+p and d+Au collisions.

Energy density at RHIC: $\underline{\varepsilon} > 5 \text{ GeV/fm}^3 \sim 30 \underline{\varepsilon}_0$

Parton energy loss: Bjorken 1982 ("Jet quenching") Gyulassy & Wang 1992

. . .

A pQCD Study

- At RHIC energy, baryons are mostly from gluons and pions are mostly from quark jets.
- Observation at high p_T:

$$R_{CP}(\pi) \sim R_{CP}(p)$$

 $R_{CP}(K) \sim R_{CP}(\Lambda)$

- pQCD color factor effects:

$$\Delta E(g)/\Delta E(q) \sim 9/4$$

- ⇒ A clear challenge to pQCD predictions!
- ⇒ Future tests with charm hadrons(quarks) and φ-meson(gluon).

STAR: nucl-ex/0703040. Phys. Lett. B, in print

Lesson Learned - QCD at Work

- (1) Spectra at intermediate p_T show evidence of suppression up to $p_T \sim 10$ GeV/c;
- (2) Jet-like behavior observed in correlations:
 - hard scatterings in AA collisions
 - disappearance of back-to-back correlations;
- (3) Effect of color factors not yet observed
- Energy loss processes should lead to progressive equilibrium in the medium

Hadron Spectra from RHIC

p+p and Au+Au collisions at 200 GeV

Multi-strange hadron spectra are exponential in their shapes. STAR white papers - Nucl. Phys. A757, 102(2005).

STAR: Strange Hadrons

STAR: *J. Adams et al., PRL,* **98**, 060301(07)

PRL in print, 2007.

Yields Ratio Results

- o data
- Thermal model fits

$$T_{ch} = 163 \pm 4 \text{ MeV}$$

$$\mu_B$$
 = 24 ± 4 MeV

- In central collisions, thermal model fit well with γ_S = 1. The system is thermalized at RHIC.
- Short-lived resonances show deviations. There is life after chemical freeze-out.

 RHIC white papers 2005, Nucl. Phys. A757, STAR: p102; PHENIX: p184.

QCD Phase Diagram

Nu Xu

Compare with Hydrodynamic Model

- Hydrodynamic model fit to pion, Kaon, and proton spectra;
- Over predicted the values of <p_T> for multi-strange hadrons who are
 'early freeze-out'
 P. Kolab and R.Rapp, PRC

Slope Parameter Systematics

Anisotropy Parameter v₂

coordinate-space-anisotropy

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle} \qquad v_2 = \langle \cos 2\varphi \rangle, \quad \varphi = \tan^{-1}(\frac{p_y}{p_x})$$

Initial/final conditions, EoS, degrees of freedom

Collectivity, Deconfinement at RHIC

- v₂ of light hadrons and multi-strange hadrons
- scaling by the number of quarks

At RHIC:

- ⇔ m_T NQ scaling
- **➡** Partonic Collectivity
- □ Deconfinement
 □

PHENIX: PRL91, 182301(03) STAR: PRL92, 052302(04), 95, 122301(05) nucl-ex/0405022, QM05

S. Voloshin, NPA715, 379(03) Models: Greco et al, PR<u>C68</u>, 034904(03) Chen, Ko, nucl-th/0602025 Nonaka et al. <u>PLB583</u>, 73(04) X. Dong, et al., Phys. Lett. <u>B597</u>, 328(04).

ϕ -meson Flow: Partonic Flow

φ-mesons are special:

- they are formed via coalescence with thermalized s-quarks
- they show strong collective flow

'They are made via coalescence of seemingly thermalized quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC'

STAR: Phys. Rev. Lett., In print nucl-ex/0703033; Phys. Lett. <u>B612</u>, 81(2005)

Viscosity and the Perfect Fluid

Caption: The viscosity to entropy ratio versus a reduced temperature.

Lacey et al. PRL **98**:092301(07) hep-lat/0406009 hep-ph/0604138

The universal tendency of flow to be dissipated due to the fluid's *internal friction* results from a quantity known as the **shear viscosity**. All fluids have non-zero viscosity. The larger the viscosity, the more rapidly small disturbances are damped away.

Quantum limit: $\eta/s_{AdS/CFT} \sim 1/4\pi$

pQCD limit: ~ 1

At RHIC: ideal (η /s = 0) hydrodynamic model calculations fit to data \Rightarrow

Perfect Fluid at RHIC?!

Lesson learned II: EoS Results

In Au + Au collisions at RHIC:

- (1) Hadron yields in the state of equilibrium chemical freeze-out near the transition temperature
- (2) The yields $N(\Omega)/N(\phi)$ ratios indicate thermalization
- (3) Partonic Collectivity and de-confinement

□ Test light quark thermalization with heavy flavor probes

Quark Masses

- Higgs mass: electro-weak symmetry breaking. (current quark mass)
- QCD mass: Chiral symmetry breaking. (constituent quark mass)
- Strong interactions do not affect heavy-quark masses.
- Important tool for studying properties of the hot/dense medium at RHIC.
- Test pQCD predictions at RHIC, including the effect of color factors.

Nu Xu

The Rcb Ratio: pQCD vs. AdS/CFT

- 1) Ratio of Charm over Bottom \Rightarrow separate the energy loss mechanism and the limit on $\eta(T)/s(T)$
- 2) At RHIC, AdS/CFT more valid at higher p_T due to $T_{RHIC} < T_{LHC}$

W. Horowitz and M. Gyulassy, nucl-th/07062336

Charm Cross Sections at RHIC

- 1) Large systematic uncertainties in the measurements
- 2) Theory under predict by a factor ~ 2 and STAR ~ 2 x PHENIX
- 3) Directly reconstructed charm hadrons ⇒Upgrades

HQ Decay Electron Data

Phenix: PRL 98 172301(07)

- Large p_T: suppression as light quark hadrons;
- Low p_T: non-vanishing v₂
- ⇒ Possible coupling of the heavy quarks with the hot/dense medium at RHIC.

Unknown: p_T dependence of the bottom quark contributions

Unknown: collectivities of lightand heavy-quarks

Decayed Electron p_T vs. b- and c-hadron p_T

The correlation between the decayed electrons and heavy-flavor hadrons is weak.

Pythia calculation Xin Dong, USTC October 2005

Upgrades Are Needed!

When systematic error dominates the data, new experiments (detectors) are called for.

STAR Upgrades

Nu Xu

RHIC Spin Physics Program

New measurements: proton-proton collisions with longitudinal and transverse polarizations at $\sqrt{s} = 200 - 500$ GeV will allow us to study the origin of proton spin.

Longitudinal Spin Measurements

$$A_{LL} = \frac{(\sigma_{++} + \sigma_{--}) - (\sigma_{+-} + \sigma_{-+})}{(\sigma_{++} + \sigma_{--}) + (\sigma_{+-} + \sigma_{-+})}$$
$$= \frac{1}{P_1 P_2} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

$$\vec{p} + \vec{p} \rightarrow jet(s) + X \qquad \vec{p} + \vec{p} \rightarrow c\bar{c}, b\bar{b} + X \qquad \vec{p} + \vec{p} \rightarrow \gamma + jet$$

$$\Delta G \qquad \Delta G$$

RHIC: P = 0.4-0.7; $I = 300-800 \text{ pb}^{-1}$; $\sqrt{s} = 200-500 \text{ GeV}$

Recent Spin Results

Summary: "... disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon."

STAR: "Longitudinal double-spin asymmetry ..." arXiv: 0710.2048, sub. to PRL

(i) Phys. Rev. Lett. 99 (2007) 142003; (ii) Phys. Rev. Lett. 97 (2006) 252001

(iii) Phys. Rev. Lett. 92 (2004) 171801

Heavy Quark Production

The NLO pQCD predictions of charm and bottom for the total p+p hadro-production cross sections.

The renormalization scale and factorization scale were chosen to be equal.

RHIC: 200, 500 GeV LHC: 900, 14000 GeV

Ideal energy range for studying pQCD predictions for heavy quark productions.

Necessary references for both heavy ion and spin programs at RHIC.

Physics Program - HFT

- Heavy quark production: Complimentary probe for gluon polarization and open the study of spin dynamics to quark mass.
- Partonic asymmetry on event kinematics Never tested before!
- NU: needs references

Physics of the Heavy Flavor Tracker at STAR

1) Au+Au collisions

- measure heavy-quark hadron v₂, the heavy-quark collectivity to study light-quark thermalization
- measure di-leptions to study the direction radiation from the hot/dens medium
- measure heavy-quark energy loss to study pQCD in hot/dense medium

2) p+p collisions

- measure energy dependence of the heavy-quark production
- measure CP with W production at 500 GeV
- measure gluon structure with heavy quarks and direct photons

Conversion Rejections with HFT

- **□** Background: $\gamma \rightarrow e^+e^-$
- **□** HFT discriminates background
- **☐** Statistics comparable to NA60
- ☐ Charm background

Detectors	ω	ф
TPC+T0F+HFT	20K	6K

Direct Radiation of Matter

The di-leptons will allow us to measure the direct radiation of matter with partonic degrees of freedom, no hadronization!

Puzzle 1: dramatic change of the slope parameter at $m \sim 1$ GeV

Puzzle 2: source of T at $m \ge 1.5$ GeV

- 1) Heavy-quark program Heavy Ion Collisions:
 - Study *medium properties* at high-energy nuclear collisions
 - pQCD in hot and dense environment
- 2) Heavy-quark program Polarized p+p Collisiosn:
 - Study nucleon heicity structure with QCD
- 3) RHIC Energy Scan / GSI program:
 - Search for the possible phase boundary and the trial-critical point.
 - Chiral symmetry restoration